gnn_tracking.analysis.latent#
Plotting functions to plot the latent space
Classes#
Plot the condensation space with selected PIDs highlighted. |
Functions#
|
Get a function that maps values to colors. |
Module Contents#
- gnn_tracking.analysis.latent.get_color_mapper(selected_values: Sequence, colors: Sequence | None = None) Callable[[numpy.ndarray], numpy.ndarray] #
Get a function that maps values to colors.
- class gnn_tracking.analysis.latent.SelectedPidsPlot(*, condensation_space: torch.Tensor, particle_id: torch.Tensor, labels: torch.Tensor, selected_pids: Sequence[int] | None = None, ec_hit_mask: torch.Tensor, input_node_features: torch.Tensor)#
Plot the condensation space with selected PIDs highlighted. Two kinds of plots are supported: Latent space coordinates and phi/eta. For each of these, separate methods plot hits of the selected PIDs, all other hits, and collateral hits (hits in the same cluster as the selected PIDs).
- Parameters:
condensation_space
particle_id
labels
selected_pids
ec_hit_mask – If we do orphan node prediction, we need to know which hits make it to the condensation space
input_node_features
- _ec_hit_mask#
- _x#
- _pids#
- _labels#
- _selected_pids#
- _color_mapper#
- _selected_pid_mask#
- _phi#
- _eta#
- get_collateral_mask(pid: int) torch.Tensor #
Mask for hits that are in the same cluster(s) as the hits belonging to this particle ID.
- static plot_circles(ax: matplotlib.pyplot.Axes, xs: torch.Tensor, ys: torch.Tensor, colors, eps=1) None #
- get_colors(pids: torch.Tensor | Sequence) Sequence #
- plot_selected_pid_latent(ax: matplotlib.pyplot.Axes, plot_circles=False) None #
- plot_collateral_latent(ax: matplotlib.pyplot.Axes) None #
- plot_other_hit_latent(ax: matplotlib.pyplot.Axes) None #
- plot_selected_pid_ep(ax: matplotlib.pyplot.Axes) None #
- plot_other_hit_ep(ax: matplotlib.pyplot.Axes) None #
- plot_collateral_ep(ax: matplotlib.pyplot.Axes) None #